首頁

明史 上 - 94 / 192
歷史類 / 張廷玉等 / 本書目錄
  

明史 上

第94頁 / 共192頁。

 大小:

 第94頁

朗讀:

按《授時歷》既成之後,閏轉交三應數,旋有改定,故《元志》、《歷經》閏應二十零萬一千八百五十分,而《通軌》載閏應二十零萬二千零五十分,實加二百分,是當時經朔改早二刻也。《歷經》轉應一十三萬一千九百零四分,《通軌》載轉應一十三萬零二百零五分,實減一千六百九十九分,是入轉改遲一十七刻弱也。《歷經》交應二十六萬零一百八十七分八十六秒,《通軌》交應二十六萬零三百八十八分,實加二百分一十四秒,是正交改早二刻強也。或以《通軌》辛巳三應,與《元志》互異,目為元統所定,非也。夫改憲必由測驗,即當具詳始末,何反追改《授時歷》,自沒其勤乎?是故《通軌》所述者,乃《授時》續定之數,而《歷經》所存,則其未定之初藁也。

通余五萬二千四百二十五分。


  

朔策二十九萬五千三百零五分九十三秒,一名朔寶。半之為望策,一名交望。又半之為弦策。

通閏一十零萬八千七百五十三分八十四秒。

月閏九千零百六十二分八十二秒。

閏限一十八萬六千五百五十二分零九秒。一名閏準。

盈初縮末限八十八萬九千零百九十二分二十五秒。

縮初盈末限九十三萬七千一百二十零分二十五秒。

轉終二十七萬五千五百四十六分,半之為轉中。

朔轉差一萬九千七百五十九分九十三秒。

日轉限一十二限二十。

轉中限一百六十八限零八三零六零。以日轉限乘轉中。一名限總。

朔轉限二十四限一零七一一四六。以日轉限乘朔轉差。

弦轉限九十零限零六八三零八六五。以日轉限乘弦策。一名限策。

交終二十七萬二千一百二十二分二十四秒。

朔交差二萬三千一百八十三分六十九秒。

氣盈二千一百八十四分三十七秒五十微。

朔虛四千六百九十四分零七秒。

沒限七千八百一十五分六十二秒五十微。

盈策九萬六千六百九十五分二十八秒。

虛策二萬九千一百零四分二十二秒。

土王策三萬零四百三十六分八十七秒五十微。

宿策一萬五千三百零五分九十三秒。

紀法六十萬。即旬周六十日。

推天正冬至 置距洪武甲子積年減一,以歲周乘之為中積,加氣應為通積,滿紀法去之,至不滿之數,為天正冬至。以萬為日,命甲子算外,為冬至日辰。累加通余,即得次年天正冬至。

推天正閏余 置中積,加閏應,滿朔策去之,至不滿之數,為天正閏余。累加通閏,即得次年天正閏余。

推天正經朔 置冬至,減閏余,遇不及減,加紀法減之,為天正經朔。 無閏加五十四萬三六七一一六。十二朔策紀法。有閏,加二十三萬八九七七零九。十三朔實去紀法。滿紀法仍去之,即得次年天正經朔 視天正閏余在閏限已上,其年有閏月。

推天正盈縮 置半歲周,內減其年閏余全分,余為所求天正縮歷。如徑求次年者,于天正縮歷內減通閏,即得。減後,視在一百五十三日零九已下者,復加朔實,為次年天正縮歷。

推天正遲疾 置中積,加轉應,減去其年閏余全分,余滿轉終去之,即天正入轉。視在轉中已下為疾歷,已上去之為遲歷。如徑求次年者,加二十三萬七一一九一六,十二轉差之積。經閏再加轉差,皆滿轉終去之,遲疾各仍其舊。若滿轉中去之,為遲疾相代。

推天正入交 置中積,減閏余,加交應,滿交終去之,即天正入交凡日。如徑求次年者,加六千零八十二分零四秒,十二交差內去交終。經閏加二萬九千二百六十五分七十三秒,十三交差內去交終。皆滿交終仍去之,即得。

推各月經朔及弦望 置天正經朔策,滿紀法去之,即得正月經朔。以弦策累加之,去紀法,即得弦望及次朔。

推各恆氣 置天正冬至,加三氣策,滿紀法去之,即得立春恆日。以氣策累加之,去紀法,即得二十四氣恆日。


  
推閏在何月 置朔策,以有閏之年之閏余減之,余為實,以月閏為法而一,得數命起天正次月算外,即得所閏之月。閏有進退,仍以定朔無中氣為定。如減余不及月閏,或僅及一月閏者,為閏在年前。

推各月盈縮歷 置天正縮歷,加二朔策,去半歲周,即得正月經朔下盈歷。累加弦策,各得弦望及次朔,如滿半歲周去之交縮,滿半周又去之即復交盈。

推初末限 視盈歷在盈初縮末限已下,縮歷在縮初盈末限已下,各為初。已上用減半歲周為末。

推盈縮差 置初末歷小余,以立成內所有盈縮加之乘之為實,日周一萬為法除之,得婁數以加其下盈縮積,即盈縮差。

推各月遲疾歷 置天正經朔遲疾歷,加二轉差,得正月經朔下遲疾歷。累加弦策,得弦望及次朔,皆滿轉中去之,為遲疾相代。

推遲疾限 各置遲次歷,以日轉限乘之,即得限數。以弦轉限累加之,滿轉中限去之,即各弦望及次朔限。如徑求次月,以朔轉限加之,亦滿轉中去之,即得。又法:視立成中日率,有與遲疾歷較小布相近者以減之,余在八百二十已下,即所用限。

求遲疾差 置遲疾歷,以立成日率減之,如不及減,則退一位。余以其下損益分乘之為實,八百二十分為法除之,得數以加其下遲疾積,即遲疾差。

推加減差 視經朔弦望下所得盈縮差、遲疾差,以盈遇遲、縮遇疾為同相併,盈遇疾、縮遇遲為異相較,各以八百二十分乘之為實,再以遲疾限行度內減去八百于二十分,為定限度為法,法除實為加減差。盈遲為加,縮疾為減,異名相較者,盈多疾為加,疾多於盈為減,縮多於遲減,遲多於縮加。

推定朔望 各置經朔弦望,以加減差加減之,即為定日。視定朔干名,與後朔同者月大,不同者月小,內無中氣者為閏月。其弦望在立成相同日日出分已下者,則退一日命之。

推各月入交 置天正經朔入交凡日加二交差,得正月經朔下入交凡日。累加交望,滿交終去之,即得各月下入交凡日。徑求次月,加交差即得。

推土王用事 置穀雨、大暑、霜降、大寒恆氣日,減土王策,如不及減,加紀法減之,即各得土王用事日。

推發斂加時 各置所推定朔弦望及恆氣之小余,以十二乘之,滿萬為時,命起子正。滿五千,又進一時,命起子初。算外得時不滿者,以一千二百除之為刻,命起初刻。初正時之刻,皆以初一二三四為好,于算外命之。其第四刻為畸零,得刻法三之一,凡三時成一刻,以足十二時百刻之數。

按古因及《授時》,皆以發斂為一章。發斂去者,日道發南斂北之細數也,而加時附焉,則又所以紀發斂之辰刻,故曰發斂加時也。《大統》取其便算,故合發斂與氣朔共為一章,或以乘除疏發斂,非其質矣。

推盈日 視恆氣小余,在沒限已上,為有盈之氣。置策余一萬零一四五六二五,以十五日除氣策。以有盈之氣小余減之,余以六十八分六六以氣盈除十五日。乘之,得數以加恆氣大庾,滿紀法去之,命甲子算外,得盈日。求盈日及分秒,以盈策加之,又去紀法,即得。

推虛日 視經朔小余在朔虛已下,為有虛之朔。 置有虛之朔小余,以六十三分九一以朔虛除三十日。乘之,得數以加經朔大庾,滿紀法去之,命甲子算外為虛日。 求次虛。 置日及分秒,以虛策加之,又去紀法,即得。



贊助商連結