首頁

清史稿 下 - 445 / 575
歷史類 / 趙爾巽等 / 本書目錄
  

清史稿 下

第445頁 / 共575頁。

 大小:

 第445頁

朗讀:

其存者,有書梅氏月建非專言鬥柄論後,略曰:「天氣渾淪,無可識認,古人不得已,即以恆星為天以識日躔。恆星積久而差,冬至日躔不在原宿,始立歲差之法。古謂恆星不動,而黃道西移。今測普天星座皆動,其經緯之度,不隨赤道運轉,而順黃道東移。故謂黃道不動,而恆星東行,與七政同一法。」又謂:「古人以中數為歲,朔數為年。上古氣朔同日,故月建起於節氣,而不起於中氣;日躔過宮,起於中氣,而不起於節氣。起於節氣,故曰冬至子之半;起於中氣,故曰冬至日躔星紀之次也。然則一歲十二建,乃天道經歷十二辰,故謂之月建,此萬古不易者也。鬥柄所指分位不真,且恆星東移,積久有差,辨之誠是也。但古人雲:‘鬥為帝車,斟酌元氣而布之四方’。又曰:‘招搖柬指。’不過言天道無跡。可見順時布化,鬥柄有象可徵耳。拘泥其詞,則惑矣。」其歲差說略曰:「恆星一年東行五十餘秒,又黃、赤二道斜交,並非平行,於左旋至速之中,微斜牽向右。日之於天,猶經緯之於日也。日行至黃道分至節氣之限,則春秋寒暑皆隨之而應。七政躔於各宮,遇各宮燥濕寒溫風雨,則隨恆星之性而應。然則冬、夏二至,乃黃道上子、午之位也。春、秋二分,乃黃道上卯、酉之位也。惟唐、虞時冬至日躔虛中,恆星之子中,正逢黃道之子中。嗣是漸差,而東周在女,漢在鬥,今在箕。黃道之子,非恆星之子也。以醜宮初度為冬至者,因周時冬至恆星已差至醜,周人即以恆星為黃道之十二次,故命醜為星紀,言諸星以此紀也。其實醜乃周時恆星之宿度,並非恆星之子中。今並不在醜,又移至寅十餘度矣。由今箕一以上溯古虛五,歷年四千有餘,已差至五十八度,此恆星東行之明驗也。」其他著論無關歷算者不錄。 列傳二百九十四  疇人二

李潢 汪萊 陳傑 丁兆慶 張福僖 時曰淳 李鋭 黎應南


  

駱騰鳳 項名達 王大有 丁取忠 李錫蕃 謝家禾 吳嘉善

羅士琳 易之瀚 顧觀光 韓應陛 左潛 曾紀鴻 夏鸞翔

鄒伯奇 李善蘭 華衡芳 弟世芳

李潢,字雲門,鍾祥人。乾隆三十六年進士,由翰林官至工部左侍郎。博綜群書,尤精算學,推步律呂,俱臻微妙。著九章算術細草圖說九卷,附海島算經一卷,共十捲。

其自序重差圖雲:「圖九,望遠,海島舊有圖解,餘八圖今所補也。同式形兩兩相比,所作四率,二三率相乘,與一四率相乘同積。如欲作圖明之,第取一三率聯為一邊,又取二四率聯為一邊,作相乘長方圖之,自然分為四冪。又以斜弦界為同式句股形各二,則形勢驗矣。舊圖於形外別作同積二方,至兩形相去遼遠者,又必宛轉通之,皆可不必也。圖中以四邊形、五邊形立說,似與句股不類,然於本形外補作句股形,則亦句股也。四率比例法,在九章粟米謂之今有,一為所有率,二為所求率,三為所有數,四為所求數,在句股則統目之為率。劉氏註雲:‘句率股率,見句見股者是也。’今祗雲同式相比者,取省易耳,異乘同除則一也。」書甫寫定,潢即病。俟吳門沈欽裴算校,方可付梓。越八年,其甥程矞采家為之校刊,以成其志。

九章初經東原戴氏從永樂大典中錄出,一刻於曲阜孔氏,再刻於常熟屈氏,悉依戴氏原校本刊刻。其時古籍甫顯,校訂較難,不無間有扞格,自是天下之習九章者,莫不家★L3一編,奉為圭臬。而劉徽九章亦從此有善本矣。潢又嘗因古算經十書中,九章之外最著者,莫如王孝通之輯古。唐制開科取士,獨輯古四條限以三年,誠以是書隱奧難通。世所傳之長塘鮑氏、曲阜孔氏、羅江李氏各刻本,又悉依汲古閣毛影宋本,祗有原術文而未詳其法,且復傳寫脫誤。雖經陽城張氏以天元一術推演細草,但天元一術創自宋、元時人,究在王氏後,似非此書本旨。爰本九章古義,為之校正,凡其誤者糾之,闕者補之,著考注二卷。以明斜袤廣狹割截附帶分並虛實之原,務如其術乃止。稿未成,潢歿後,為南豐劉衡授其鄉人,以西士開方法增補算草,並附圖解,刻於江西省中,喧賓奪主,殊亂其真。矞採取江西刻本削去圖草,仍以原考注刊佈。

武進李兆洛為之序,曰:「輯古何為而作也?蓋闡少廣、商功之藴而加精焉者也。商功之法,廣袤相乘,又以高若深乘之為立積,今轉以積與差求廣袤高深,所求之數,最小數也。曷為以最小數為所求數?曰,求大數,則實方廉隅,正負雜糅。求小數,則實常為負,方廉隅常為正也。觀台羨道,築堤穿河,方倉圓囤,芻甍輸粟,其形不一,概以從開立方除之何也?曰,一以貫之之理也。物生而後有象,象而後有滋,滋而後有數。斜解立方,得兩巉堵,一為陽馬,一為鱉臑。陽馬居二,鱉臑居一,不易之率也。今於平地之餘續狹斜之法,無論為巉堵、為陽馬、為鱉臑,皆作立積。觀其立積內不以所求數乘者為減積,以所求數一乘者為方法,再乘者為廉法,所求數再自乘為立方,即隅法也。從開立方除之,得所求數。若繪圖於紙,令廣袤相乘,以所求數從橫截之。剖平冪為若幹段,又以截高與所求數乘之。分立積為若幹段,若者為減積,若者為方,若者為廉,若者為隅,條段分明,歷歷可指。作者之意,不煩言而解矣。其雲廉母自乘為方母,廉母乘方母為實母者之分,開方之要術也。先生於是書立法之根,如鋸解木,如錐劃地,又復補正脫誤,條理秩然,信王氏之功臣矣!爰述大旨,以告世之習是書者,無復苦其難讀雲。」


  
汪萊,字孝嬰,號衡齋,歙縣人。年十五,補博士弟子。弱冠後,讀書於吳葑門外,慕其鄉江文學永、戴庶常震、金殿撰榜、程徵君易疇學,力通經史百家及推步歷算之術。嘉慶十二年,以優貢生入都,考取八旗官學教習,會禦史徐國楠奏請續修天文、時憲二志,經大學士首舉萊與徐準宜、許澐入館纂修。十四年,書成。議敘,以本班教職用,選授石埭縣訓導。十八年,應省試,得疾歸,卒於官,年四十有六。先是十一年夏,黃河啟放王營減壩,正溜直注張家河,會六塘河歸海。兩江督臣奉上命,查量雲梯關外舊海口與六塘河新海口地勢高下,延萊測算,蓋其精算之名,久為官卿所知。曾制渾天、簡平、一方各儀器觀測。

與郡人巴樹穀最友善,客江、淮間,又與焦孝廉循、江上舍籓、李秀才鋭,辯論宋秦九韶、元李冶立天元一及正、負開方諸法。天性敏絶,極能攻堅,不肯苟於著述。凡所言,皆人所未言,與夫人所不能言。

嘗以古書八綫之制,終於三分取一,用益實歸除法求之,其一表之真數,僅得十之二。因悟得五分之一通弦與五分之三通弦交錯為三角形,比例立法,以取五分之一之通弦,而弦切之數益密。梅氏環中黍尺,有以量代算之術,惟求倚平儀外周之兩角,而縮於內半周之角未詳。其法較易,因立新術,量取不倚外周之角度,而三角之量法乃全。堆垛有求平三角、立三角、尖堆積法,不及三乘方以上,又復推而廣之,自三乘、四乘以上之尖堆,皆可由根知積。並及諸物遞兼之法,以補古九章所未備。



贊助商連結