首頁

清史稿 上 - 177 / 663
歷史類 / 趙爾巽等 / 本書目錄
  

清史稿 上

第177頁 / 共663頁。

 大小:

 第177頁

朗讀:

求三星初實行,置本星平行,減最高行,得引數。用平三角形,以均輪半徑減本輪半徑為對正角之邊,以引數為一角,求得對引數角之邊及對又一角之邊。又用平三角形,以對引數角之邊與均輪通弦相加 求通弦法,詳月離。 為小邊,以對又一角之邊與本天半徑相加減 引數三宮至八宮相減,九宮至二宮相加。 為大邊,正角在兩邊之中,求得對小邊之角為初均數。並求得對正角之邊為次輪心距地心綫,以初均數加減本星平行, 引數初宮至五宮減,六宮至十一宮加。 得本星初實行。

求三星本道實行,置本日太陽實行減本星初實行,得次引。 即距日度。 用平三角形,以次輪心距地心綫為一邊,次輪半徑為一邊, 惟火星次輪半徑時時不同,求法詳後。 次引為所夾之外角, 過半周者與全周相減,用其餘。 求得對次輪半徑之角為次均數,並求得對次引角之邊為星距地心綫。乃以次均數加減初實行, 加減與初均相反。 得本星本道實行。求火星次輪實半徑,以火星本輪全徑命為二千萬為一率,本天高卑大差為二率,均輪心距最卑之正矢為三率, 引數與半周相減,即均輪心距最卑度。 求得四率為本天高卑差。又以太陽本輪全徑命為二千萬為一率,太陽高卑大差為二率,本日太陽引數之正矢為三率, 引數過半周者與全周相減,用其餘。 求得四率為太陽高卑差。乃置火星最小次輪半徑,以兩高卑差加之,得火星次輪實半徑。


  

求三星黃道實行,置本星初實行,減本星正交行,得距交實行。 次輪心距正交。 乃以本天半徑為一率,本道與黃道交角之餘弦為二率,距交實行之正切為三率,求得四率為正切。檢表得黃道度,與距交實行相減,得升度差,以加減本道實行, 距交實行不過象限及過二象限為減,過象限及過三象限為加。 得本星黃道實行。

求三星視緯,以本天半徑為一率,本道與黃道交角之正弦為二率,距交實行之正弦為三率,求得四率為正弦,檢表得初緯。又以本天半徑為一率,初緯之正弦為二率,次輪心距地心綫為三率,求得四率為星距黃道綫。乃以星距地心綫為一率,星距黃道綫為二率,本天半徑為三率,求得四率為正弦。檢表得本星視緯,隨定其南北。 距交實行初宮至五宮為黃道北,六宮至十一宮為黃道南。

求黃道宿度及紀日,同日躔。

求交宮時刻,同月離。

求三星晨夕伏見定限度,視本星黃道實行與太陽實行同宮同度為合伏。合伏後距太陽漸遠,為晨見東方順行。順行漸遲,遲極而退為留退。初退行距太陽半周為退沖,退沖之次日為夕見。退行漸遲,遲極而順為留順。初順行漸疾復近太陽,以至合伏,為夕不見。其伏見限度,土星十一度,木星十度,火星十一度半。合伏前後某日,太陽實行與本星實行相距近此限度,即以本星本日黃道實行,用弧三角形,以赤道地平交角為所知一角, 夕,春分後用內角,秋分後用外角;晨反是。 實行距春秋分度為對邊,黃赤大距為所知又一角,求得不知之對邊。乃用所知兩邊對所知兩角,求得不知之又一角, 夕,秋分後用內角,春分後用外角;晨反是。 為限距地高。乃用弧三角形,有正角,有黃道地平交角, 即限距地高。 有本星伏見限度,為對交角之弧,求得對正角之弧,為距日黃道度。 若星當黃道無距緯,即為定限度。 又用弧三角形,有正角,有黃道地平交角,以本星距緯為對交角之弧,求得兩角間之弧,為加減差。以加減距日黃道度, 緯南加,緯北減。 得伏見定限度。視本星距太陽度與定限度相近,如在合伏前某日,即為某日夕不見;在合伏後某日,即為某日晨見。

求三星合伏時刻,視太陽實行將及本星實行,為合伏本日;已過本星實行,為合伏次日。求時刻,於太陽一日之實行 即本日次日兩實行之較。 內減本星一日之實行為一率,餘同月離求朔、望。

求三星退沖時刻,視本星黃道實行與太陽實行相距將半周,為退沖本日;已過半周,為退沖次日。求時刻之法,以太陽一日之實行與本星一日之實行相加為一率,餘同前。

求同度時刻,以兩星一日之實行相加減 兩星同行則減。一順一逆則加。 為一率,刻下分為二率,兩星相距為三率,求得四率為距子正之分數,以時刻收之即得。五星並同。

金星用數

每日平行三千五百四十八秒,小餘三三0五一六九。

最高日行十分秒之二又二七一0九五。

伏見每日平行二千二百十九秒,小餘四三一一八八六。

本輪半徑二十三萬一千九百六十二。

均輪半徑八萬八千八百五十二。

次輪半徑七百二十二萬四千八百五十。

次輪面與黃道交角三度二十九分。

金星平行應初宮初度二十分十九秒十八微。

最高應六宮一度三十三分三十一秒四微。

伏見應初宮十八度三十八分十三秒六微。

水星用數

每日平行與金星同。

最高日行十分秒之二又八八一一九三。

伏見每日平行一萬一千一百八十四秒,小餘一一六五二四八。

本輪半徑五十六萬七千五百二十三。

均輪半徑一十一萬四千六百三十二。

次輪半徑三百八十五萬。

次輪心在大距,與黃道交角五度四十分。

次輪心在正交,與黃道交角北五度五分十秒,其交角較三十四分五十秒。 與大距交角相較,後仿此。 南六度三十一分二秒,其交角較五十一分二秒。

次輪心在中交,與黃道交角北六度十六分五十秒,其交角較三十六分五十秒。南四度五十五分三十二秒,其交角較四十四分二十八秒。

水星平行應與金星同。


  

最高應十一宮三度三分五十四秒五十四微。

伏見應十宮一度十三分十一秒十七微,餘見日躔。

推金、水星法

求天正冬至,同日躔。

求金、水本星平行,同土、木、火星。

求金、水最高行,同土、木、火星。

求金、水伏見平行,同本星平行。

求金、水正交行,置本星最高平行,金星減十六度,水星加減六宮,即得。

求金星初實行,用本星引數求初均數,以加減本星平行,為本星初實行。及求次輪心距地心綫,並同土、木、火星。

求水星初實行,用平三角形,以本輪半徑為一邊,均輪半徑為一邊,以引數三倍之為所夾之外角, 過半周者與全周相減,用其餘。 求其對角之邊,並對均輪半徑之角。又用平三角形,以本天半徑為大邊,以對角之邊為小邊,以對均輪半徑之角與均輪心距最卑度相加減, 引數不及半周者,與半周相減;過半周者,減去半周,即均輪心距最卑度。加減之法,視三倍引數不過半周則加,過半周則減。 為所夾之角,求得對小邊之角為初均數,並求得對角之邊為次輪心距地心綫。以初均數加減水星平行, 引數初宮至五宮為減,六宮至十一宮為加。 得水星初實行。

求金、水伏見實行,置本星伏見平行,加減本星初均數, 引數初宮至五宮為加,六宮至十一宮為減。 即得。

求金、水黃道實行,用平三角形,以本星次輪心距地心綫為一邊,本星次輪半徑為一邊,本星伏見實行為所夾之外角, 過半周者與全周相減,用其餘。 求得對次輪半徑之角為次均數,並求得對角之邊為本星距地心綫。以次均數加減初實行, 伏見實行初宮至五宮為加,六宮至十一宮為減。 得本星黃道實行。

求金、水距次交實行,置本星初實行,減本星正交行,為距交實行。與本星伏見實行相加,得本星距次交實行。

求金、水視緯,以本天半徑為一率,本星次輪與黃道交角之正弦為二率, 金星交角惟一,水星交角則時時不同,須求實交角用之,法詳後。 本星距次交實行之正弦為三率,求得四率為正弦,檢表得本星次緯。又以本天半徑為一率,本星次緯之正弦為二率,本星次輪半徑為三率,求得四率為本星距黃道綫。乃以本星距地心綫為一率,本星距黃道綫為二率,本天半徑為三率,求得四率為正弦,檢表得本星視緯,隨定其南北。 初宮至五宮為黃道北,六宮至十一宮為黃道南。



贊助商連結